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The variability in treatment responses and narrow therapeutic index of anticancer
drugs are some of the key challenges oncologists face. The knowledge of pharma-
cogenetics can potentially aid in the discovery, development and ultimately individu-
alization of anticancer drugs. The identification of genetic variations that predict for
drug response is the first step towards the translation of pharmacogenetics into clinical
practice. This review provides an update on the results of studies assessing the effects
of germline polymorphisms and somatic mutations on therapeutic outcomes and
highlights the potential applications and future challenges in pharmacogenetic
research pertaining to cancer therapeutics.

 

Introduction

 

Genetic constitution is an important cause for individual
variations in the response and tolerance to drug treat-
ment [1]. These variations are often due to germline
mutations in genes that encode for drug-metabolizing
enzymes, transporters, cellular targets and signalling
pathways. An important distinction between pharmaco-
genetics in oncology and other therapeutic fields is that
somatic mutations, frequently acquired in cancer tis-
sues, also contribute to the variations in treatment out-
come and could fortuitously be exploited in targeted
therapy to maximize treatment efficacy. The application
of pharmacogenetic testing in cancer therapy is particu-
larly attractive because of the narrow therapeutic index
of chemotherapeutic agents. This review aims to provide

an update on the genetic basis for interindividual varia-
tions in therapeutic outcome relevant to key classes of
anticancer agents and the potential application of phar-
macogenetics in the treatment of cancer.

 

Drug metabolizing enzymes

 

Thiopurine methyltransferase and 6-mercaptopurine

 

Thiopurine methyltransferase (TPMT) is a cytosolic
enzyme that catalyses the methylation of aromatic and
heterocyclic sulphydryl compounds. The substrates of
TPMT include 6-mercaptopurine, 6-thioguanine and
azathioprine. 6-mercaptopurine is used for the treatment
of childhood acute lymphocytic leukaemia (ALL). Two
other pathways compete with TPMT for the metabolism
of 6-mercaptopurine: xanthine oxidase converts 6-



 

W. P. Yong et al. 

 

36

 

62

 

:1

 

Br J Clin Pharmacol

 

mercaptopurine to an inactive thiouric acid, whereas
hypoxanthine guanine phosphoribosyltransferase con-
verts it to thioinosine monophosphate, the precursor of
active thioguanine nucleotides [2]. The xanthine oxidase
activity in haematopoietic tissues is negligible and
TPMT is the major inactivating enzyme for 6-mercap-
topurine in these tissues.

Genetic polymorphisms in 

 

TPMT

 

 have been associ-
ated with 6-mercaptopurine toxicity and therapeutic
efficacy [3–6]. Patients with TPMT deficiency require
dose reduction to prevent life-threatening toxicity.
Even when treated at 10% of the standard dose of 6-
mercaptopurine, patients homozygous for 

 

TPMT

 

 vari-
ants have similar or superior survival compared with
patients with at least one wild-type allele [7]. In addi-
tion, a higher incidence of etoposide-induced myeloid
leukaemia, and radiation-induced brain metastases were
observed in patients with TPMT deficiency [8, 9]. It is
postulated that increased exposure to thioguanine nucle-
otides may increase DNA damage and potentiate the
leukaemogenic effect of etoposide and radiation.
Patients homozygous for the wild-type allele are less
likely to have severe treatment toxicity but may be at
higher risk of disease relapse [10, 11].

Weinshilboum & Sladek demonstrated that red cell
TPMT activity has a trimodal distribution and is inher-
ited in an autosomal codominant fashion [12]. It is esti-
mated that one in 300 caucasians carry two ‘deficient’

 

TPMT

 

 alleles (with reduced or no function) and have
almost no detectable TPMT activity, while one in 10 has
intermediate TPMT activity. At least 21 nonsynonymous
mutations have been identified, of which 17 were shown
to result in reduced TPMT activity [13, 14]. 

 

TPMT

 

*

 

3A

 

is the most common variant in caucasians and, together
with 

 

TPMT

 

*

 

2

 

 and 

 

TPMT

 

*

 

3C

 

, accounts for over 95% of
low activity phenotypes. In caucasians, the reported
allelic frequencies were 4.4%, 0.4% and 0.2% for

 

TPMT

 

*

 

3A, TPMT

 

*

 

2

 

 and 

 

TPMT

 

*

 

3C

 

, respectively [14].
TPMT enzymes produced by 

 

TPMT

 

*

 

2

 

, 

 

TPMT

 

*

 

3A

 

 and

 

TMPT

 

*

 

3C

 

 variants were susceptible to proteosomal
degradation resulting in lower catalytic activity [15, 16].

There are substantial differences in the frequency of
TMPT variants across various population groups. In
South-East Asian and African populations, 

 

TPMT

 

*3C
is the most common 

 

TPMT

 

 variant. The estimated
allele frequencies of 

 

TPMT

 

*

 

3C

 

 were 2.3–1% and
2.4% for South-East Asian and African populations,
respectively [17–19]. Variable number tandem repeats
(VNTR) have been found in the promoter region of
TPMT. Although there is 

 

in vitro

 

 evidence to suggest
that VNTR polymorphisms correlate negatively with
TPMT activity, the importance of VNTR polymor-

phisms has not been clearly established in clinical
studies [20–22].

The traditional way of assessing TPMT red blood cell
activity has several limitations: (i) the test result is unre-
liable for up to 60 days following blood transfusion, (ii)
it  is  time  consuming,  and  (iii)  thiopurine  administra-
tion may increase enzyme activity by approximately
20%, especially in heterozygous individuals  [10, 23].
Recently,  a  large-scale  genotype–phenotype  associa-
tion study has demonstrated the feasibility of
pharmacogenetic testing for 

 

TPMT

 

 polymorphisms
(

 

TPMT

 

*

 

2

 

, 

 

TPMT

 

*

 

3

 

, 

 

TPMT

 

*9, 

 

TPMT

 

*

 

16, TMPT

 

*

 

17

 

and 

 

TPMT

 

*

 

18

 

) [14]. A high overall concordance was
observed between 

 

TPMT

 

 genotype and phenotype
(98.4%). The sensitivity and specificity of the test were
90% and 99%, respectively, and the positive and nega-
tive predictive values were 94% and 99%, respectively.
The Food and Drug Administration (FDA) has recom-
mended patients with clinical evidence of severe toxic-
ity, particularly myelosuppression, to be considered for
TPMT testing.

 

UDP-glucuronosyltransferases and irinotecan

 

UDP-glucuronosyltransferases belong to a superfamily
of enzymes that catalyse the glucuronidation of many
lipophilic xenobiotics and endogenous substrates. The
addition of a glycosyl group from a nucleotide sugar
renders hydrophobic compounds more soluble for elim-
ination via bile and urine. The 

 

UGT1

 

 gene, located on
chromosome 2q37, expresses nine functional UGT1A
proteins by alternative splicing of 13 different exons 1
with the common exons 2–5 [24]. UGT1A1 is the major
isoform responsible for the glucuronidation of bilirubin
and SN-38, the active metabolite of irinotecan [25, 26].
Iyer 

 

et al.

 

 had reported a wide interindividual variation
in UGT1A1 activities, with a 17-fold difference in the
rate of SN-38 glucuronidation observed 

 

in vitro

 

 [27].
Reduced glucuronidation of SN-38 has been associ-

ated with increased treatment-related diarrhoea and
neutropenia [28, 29]. This observation led to several
clinical studies that demonstrated the association
between 

 

UGT1A1

 

*

 

28

 

, hyperbilirubinaemia and irinote-
can toxicity [30–33]. 

 

UGT1A1

 

*

 

28

 

 homozygosity is
associated with Gilbert’s syndrome, a benign form of
familial hyperbilirubinaemia [25, 34]. It is defined as a
dinucleotide (TA) insertion in the TATA box of the

 

UGT1A1

 

 promoter (TA)

 

7

 

 resulting in a reduction in the
expression of UGT1A1 [25, 34, 35]. In one study, grade
4 neutropenia was observed in half of the patients
homozygous for 

 

UGT1A1

 

*

 

28

 

, whereas no grade 4 tox-
icity was reported in patients lacking this allele [32].
Based on this study, it is estimated that 

 

UGT1A1

 

*

 

28
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genotyping could lead to a 50% relative reduction or 5%
absolute reduction in grade 4 neutropenia. This trans-
lates into the prevention of one severe irinotecan toxicity
for every 20 patients genotyped for 

 

UGT1A1

 

*

 

28

 

. In the
same study, variant 

 

−

 

3156G

 

→

 

A also predicted for lower
nadir neutrophil counts [32]. This latter polymorphism
is common (frequency of 0.3) and in close proximity to
the phenobarbital response enhancer module. It is also
in linkage disequilibrum with 

 

UGT1A1

 

*

 

28

 

 but the
functional significance of this polymorphism is still
unknown [36].

There is a wide frequency variation in the 

 

UGT1A1

 

*

 

28

 

genotype across different population groups. Homozy-
gosity for 

 

UGT1A1

 

*

 

28

 

 occurs in 19–24% of the popu-
lations in the Indian subcontinent, 12–27% of African
populations, 5–15% of caucasian populations but only
1.2–5% in South-east Asian and Pacific populations [35,
37–40]. In addition, several other polymorphisms that
are more commonly associated with Gilbert’s syndrome
in East Asians were shown to have reduced SN-38
glucuronidation activities 

 

in vitro

 

: 

 

UGT1A1

 

*

 

60

 

(3279T

 

→

 

G), 

 

UGT1A1

 

*

 

6

 

 (211G

 

→

 

A, G71R),

 

UGT1A1

 

*

 

27

 

 (686C

 

→

 

A, P229Q) and 

 

UGT1A1

 

*

 

7

 

(1456T

 

→

 

G, Y486D) [36–41]. The reported allelic fre-
quencies of these variants were 13–23% (

 

UGT1A1

 

*

 

6

 

),
13.6% (

 

UGT1A1

 

*

 

60

 

) and 0.5–2.8% (

 

UGT1A1

 

*

 

27

 

) [42–
44]. Prospective studies should be performed in order
better to ascertain the benefits and optimal genotyping
strategy in different population groups.

 

Dihydropyrimidine dehydrogenase and 5-fluorouracil

 

5-fluorouracil (5-FU) has been a cornerstone in the treat-
ment of colorectal cancer over the past few decades. 5-
FU is converted to its cytotoxic nucleotides, which in
turn inhibit thymidylate synthase or incorporates into
RNA and DNA. It is metabolized to its inactive form,
5,6-dihydro-5-fluorouracil, by dihydropyrimidine dehy-
drogenase (DPYD) [45]. DPYD is the rate-limiting
enzyme in the catabolism of pyrimidines such as uracil
and thymidine, and the synthesis of 

 

β

 

-alanine [46].
Decreased DPYD activity can lead to the accumulation
of 5-FU and severe toxicities, including mucositis, neu-
tropenia, neurological symptoms and death [47–49].

Over 40 different polymorphisms have been reported,
of which 17 mutations are found in patients with severe
5-FU toxicity [50]. It is estimated that 3–5% of the
population is heterozygous and 0.1% is homozygous for
alleles  with  impaired  DPYD  function [51, 52].

 

DPYD

 

*

 

2A

 

 is  the most common DPYD polymorphism
associated with impaired DPYD activity. DPYD*2A is
caused by a 5′ splice site mutation at intron 14 G1A
resulting in the formation of a truncated protein [53]. It

is estimated that about a quarter of patients suffering
from severe 5-FU toxicity have DPYD*2A polymor-
phism [54, 55]. The allelic frequency of DPYD*2A is
about 1.8% in European caucasians, while it has not
been detectable in Egyptian and Japanese populations
[56–58].

Although DPYD polymorphisms are associated with
severe 5-FU toxicity, about one- to two-thirds of patients
who experienced treatment toxicity do not have a molec-
ular basis for DPYD deficiency [59–60]. In addition,
DPYD genotyping correlates poorly with DPYD level
[61]. The low frequency of DPYD polymorphisms as
well as the low sensitivity and specificity of genotyping
hampered the application of DPYD pharmacogenetics
to clinical practice.

CYP2D6 and tamoxifen
Tamoxifen is widely used in the treatment for oestrogen
receptor-positive breast cancer. It is metabolized by
several CYP isoforms (CYP3A, CYP2D6, CYP2C9,
CYP2C19, CYP2B6 and CYP1A2) to form several
metabolites, including 4-hydroxy-tamoxifen, N-desmethyl-
tamoxifen and 4-OH-N-desmethyl-tamoxifen (endox-
ifen) [62–63]. Both endoxifen and 4-OH-tamoxifen are
100 times more potent than tamoxifen, but endoxifen is
present at a much higher plasma concentration than 4-
OH-tamoxifen [64].

CYP2D6 appears to be the predominant CYP isoform
that catalyses the formation of endoxifen [63]. There is
a strong association between CYP2D6 genotype and
plasma levels of endoxifen [65]. A fourfold difference
in endoxifen concentration was observed between sub-
jects homozygous for wild type compared with those
homozygous for the nonfunctional CYP2D6 variants.
Studies assessing the association between CYP2D6 gen-
otype with patient outcomes to tamoxifen have pro-
duced contradicting reports. Nowell et al. did not find a
significant association between CYP2D6 genotype and
overall survival [66], whereas Wegman et al. suggested
that tamoxifen treatment benefited patients with
CYP2D6*4 alleles but not CYP2D6*1 homozygotes
[67]. However, it is difficult to interpret the results of
both retrospective studies as the number of patients
homozygous for variant CYP2D6 genotype was small
and the comparison arms were not controlled for tumour
stage and other treatment modalities.

At least 88 allelic variants have been described, many
of which are nonfunctional or have reduced catalytic
activity. It is estimated that 5–10% of caucasians have
nonfunctional variants [68]. CYP2D6*4 is the most
common nonfunctioning variant in caucasians and,
together with CYP2D6*3, CYP2D6*5 and CYP2D6*6,
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constitutes approximately 97% of all nonfunctioning
phenotypes [69, 70]. In CYP2D6*3 and CYP2D6*6, a
single base deletion at 2637A and 1795T, respectively,
results in a premature stop codon and the production of
a nonfunctioning truncated protein, whereas CYP2D6*5
is a gene deletion. CYP2D6*4 allele has a 1934G→A
transition at the junction of the intron 3 and exon 4,
producing a splicing defect [71].

Gene duplication is responsible for ultrarapid
CYP2D6 metabolism in only 1–3% of Europeans and
up to 20% of some Middle-Eastern and North African
populations [72]. The frequencies of nonfunctional alle-
les are relatively low in Asians, but there is a large
proportion of the population with variant alleles that are
associated with reduced CYP2D6 activity. CYP2D6*10
(188C→T, P34S) occurs in about 50% of East Asians
and largely accounts for lower CYP2D6 activity in the
extensive metabolizer phenotype in Asians [73, 74],
whereas CYP2D6*2 and CYP2D6*17 are more common
in African-Americans [75]. Additional studies will be
needed to address the impact of gene duplication and
reduced function alleles.

Metabolizing enzymes of the folate pathway
Methylenetetrahydrofolate reductase and methotrexate
Methotrexate exerts its cytotoxic effects by inhibiting
several folate-dependent enzymes, including dihydro-
folate reductase, thymidylate synthase and aminoimida-
zole carboxamide transformylase. The treatment
toxicity from high-dose methotrexate can be minimized
with the administration of reduced folate, folinic acid
[76]. Conversely, a reduction of intracellular folate pool
can lead to an increase in methotrexate toxicity.

5,10-methylenetetrahydrofolate reductase (MTHFR)
is an important enzyme that regulates folate and
homocysteine homeostasis. It catalyses the reduction of
5,10-methylenetetrahydrofolate to 5-methyltetrahydro-
folate, the predominant circulatory form of folate and
the carbon moiety required for the conversion of
homocysteine to methionine [77].

Deficiency in MTHFR has been associated with a
reduced folate pool, as well as neurological and vascular
diseases [78–80]. 677C→T, a common functional poly-
morphism of MTHFR, produces an alanine to valine
amino acid substitution within the predicted catalytic
domain of the MTHFR enzyme. The resultant variant
protein has reduced catalytic activity and is more ther-
molabile [81]. An A→C mutation at position 1298 of
MTHFR gene abolishes an MboII recognition site.
Although 1298A→C has been associated with reduced
MTHFR activity, neither the homozygous nor heterozy-
gous state is associated with a change in homocysteine

or folate level. However, it appears that individuals het-
erozygous for both 677C→T and 1298A→C have a
phenotype similar to that of 677TT homozygotes [82].
The allelic frequency of 677C→T variant ranges from
24 to 46% in Europeans, 26 to 44% in East Asians, 57%
in Mexicans and 11% in African Americans [83, 84].

MTHFR677C→T variant is associated with a
decreased folate level [85]. Patients with variant
MTHFR677C→T allele are more likely to experience
treatment-related toxicity after methotrexate, as part of
the regimens for breast cancer, ovarian cancer and bone
marrow transplant [86–89]. Testing for MTHFR poly-
morphisms may help to identify individuals at risk of
severe treatment toxicity. It is likely that polymorphisms
in other folate-dependent enzymes and transporters may
also affect the response to methotrexate.

Drug targets
Thymidylate synthase and antimetabolites
Thymidylate synthase (TYMS) catalyses the methyla-
tion of deoxyuridine monophosphate (dUMP) to deox-
ythymidine monophosphate (dTMP), the only source of
intracellular thymidylate essential for DNA replication
and repair [90]. It is the main target for 5-FU, capecit-
abine and raltitrexed. The active metabolite of 5-FU,
fluorodeoxyuridine monophosphate (FdUMP) blocks
the formation of dTMP by forming a stable complex
with TYMS. The overexpression of TYMS is associated
with resistance to 5-FU and other TYMS inhibitors such
as raltitrexed [91–93] and reduced response to hepatic
artery infusion of floxuridine [94].

TYMS gene contains seven exons and a 5′-flanking
untranslated enhancer region containing a 28-bp tan-
dem repeat sequence [95, 96]. The number of tandem
repeats varies from two (2R) to nine (9R) copies [97].
The translational efficiency is correlated with the num-
ber of tandem repeats. In vitro, there is a 2.6–3.6-fold
increase in TYMS expression with the 3R variant com-
pared with the 2R variant [98, 99]. The distribution of
tandem repeats in caucasians is 16% 2R/2R, 51–55%
2R/3R, 29–32% 3R/3R and <1% for other variants
[100–101].

A G→C SNP located at the 12th nucleotide of the
second tandem repeat of 3R has recently been identified
(3RC) [102]. The polymorphism occurs within the USF
consensus element and alters the transcriptional activity
of TS gene. 3RC variant has a lower TS expression level
and is associated with better clinical outcome with flu-
oropyrimidines when compared with the 3R variant
[103–104]. This may explain some of the discrepancies
seen when 5′  UTR tandem repeats were used alone in
predicting 5-FU response. The 3RC allele (3RC) occurs
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in 56%, 28% and 37% of all 3R alleles in caucasians,
African-Americans and Chinese, respectively [102].

In patients with metastatic colorectal cancer, those
homozygous for 3R had a poorer survival (12 months
vs. 16 months) and a lower response rate (9% vs. 50%)
to 5-FU-based chemotherapy [99, 105]. Similarly,
patients homozygous for 3R benefited less from 5-FU
adjuvant chemotherapy and neoadjuvant chemoradia-
tion [106, 107]. In children with acute lymphoblastic
leukaemia who were treated with methotrexate, those
homozygous for 3R had poorer event-free survival
[108].

Gene amplification can result in the overexpression
of TYMS. Wang et al. has shown the feasibility of using
fluorescence in situ hybridization to detect TYMS gene
amplification in cancer tissues. In this study, patients
with metastases containing TYMS amplification had
poorer survival (329 vs.  1021 days), which suggests
that TYMS amplification is a major mechanism of 5-FU
resistance [109].

A 6-bp deletion located in the 3′ untranslated region
(UTR), 447 bp downstream of the stop codon, has also
been associated with decreased mRNA stability and
intratumoral TYMS level [110]. This 3′-UTR polymor-
phism was found to be in linkage disequilibrium with
5′-flanking untranslated enhancer region polymorphism
and the haplotypes 2R/ins 6-bp seemed to be associated
with increased treatment toxicity [100]. In colorectal
cancer tissues, the loss of heterozygosity (LOH) of the
TYMS locus is a common phenomenon (62%) [111].
Patients with 3R/2R genotype can acquire 3R/loss or
2R/loss genotype in their cancer tissues. Patients with
tumour 3R/loss genotype had a poorer treatment out-
come compared with 2R/loss when treated with fluoro-
pyrimidine-based therapy [112]. This highlights the
importance of assessing somatic mutations in cancer
tissues in order to predict for treatment outcome.

Epidermal growth factor receptor and tyrosine 
kinase inhibitors
The epidermal growth factor receptor (EGFR) is fre-
quently dysregulated and overexpressed in a number
of epithelial cancers including nonsmall cell lung can-
cer (NSCLC) and head and neck cancer. EGFR signal-
ling is important for tumour cell proliferation and
angiogenesis, and has become an attractive target for
therapy [113].

Two oral EGFR tyrosine kinase inhibitors (TKI), gefi-
tinib and erlotinib, have been approved for use as sec-
ond- or third-line therapy in advanced non-small-cell
lung cancer. These drugs have a favourable toxicity
profile. The most frequent toxicities are diarrhoea and

acneiform rash. Patients who develop skin toxicity are
associated with a favourable outcome [114]. After eval-
uating the initial analysis of two large placebo-
controlled phase III trials (BR21 and ISEL), FDA cur-
rently limits the use of gefitinib to patients who are
already receiving and benefiting from gefitinib [115–
116]. However, studies on gefitinib and EGFR have
provided valuable insight into genetic variation and
treatment outcomes.

Different population groups showed significant vari-
ability in the response to these drugs. The response rate
of gefitinib is higher in Japanese patients compared with
caucasians (27.5% vs. 10.5%) [117]. Furthermore, the
intensity of immunohistochemical staining for tumour
EGFR expression does not correlate well with response
[118]. Recently, somatic mutations in the tyrosine
kinase domain of the EGFR were found to be present in
most patients who responded to gefitinib and erlotinib
[119–121]. It is postulated that these mutations, which
cluster around the ATP-binding site of the tyrosine
kinase domain (exons 18, 19 and 21), stabilize the inter-
action between drug and the tyrosine kinase domain.
The most common mutations are due to multinucleotide
in-frame deletion in exon 19 and a point mutation
L858RA in exon 20. Within the tyrosine kinase domain,
a point mutation, T790M, seems to confer resistance to
gefitinib [122]. Two Asian studies found that EGFR
genotyping has a sensitivity of 52–92%, a specificity of
79–91% and a negative predictive value of 86–90%,
which construes that nine out of 10 patients with a
negative EGFR genotyping will not benefit from gefi-
tinib treatment [123, 124].

In addition to EGFR tyrosine kinase domain muta-
tions, several studies have linked EGFR TKI sensitivity
to increased EGFR gene copy number in lung cancer
[125, 126]. Cappuzzo et al. have demonstrated that a
high EGFR gene copy number was associated with bet-
ter response (36% vs. 3%) and survival (19 months vs.
7 months) when treated with gefitinib [126].

The potential importance of germline polymorphisms
in determining clinical response to TKIs has not been
clearly established. However, the presence of interethnic
differences in the frequency of somatic mutations, and
the positive correlation between rash and response and/
or survival when treated with TKIs, may suggest a pos-
sible genetic basis for susceptibility to somatic mutation
and skin toxicity [114, 117, 127]. Currently, research
efforts have been focusing on identifying germline vari-
ants that may affect: (i) the cellular susceptibility to
somatic mutations, (ii) the development of skin rash, and
(iii) the transcriptional activity and expression of EGFR
[128–130].
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Application of pharmacogenetic testing to 
cancer therapeutics
Currently, there are strong data to support the use of
pharmacogenetic testing for UGT1A1 and TPMT poly-
morphisms. Pharmacogenetic information pertaining to
irinotecan toxicity is now included in the revised drug
labelling after the FDA advisory committee meeting in
November 2004. Pharmacogenetic testing may enable
clinicians to identify those patients who are less likely
to benefit from expensive drugs, and those who are
susceptible to severe treatment-related toxicities at stan-
dard treatment doses, thus making treatments safer and
more cost-effective. The availability of high-throughput
genotyping platforms has allowed a large set of SNP
markers to be studied and may lower the cost of phar-
macogenetic testing.

The utility of pharmacogenetics extends beyond can-
cer therapy. It has the potential to facilitate the identifi-
cation of drug targets and accelerate drug discovery and
development. Tumour tissues frequently acquire muta-
tions in oncogenes, which themselves can confer sensi-
tivity to drugs, as in the case of EGFR tyrosine kinase
domain mutation and response to gefitinib. Incorporat-
ing pharmacogenetic testing in early clinical trials may
provide vital information about pharmacogenetic pro-
files with treatment responses and tolerability. This
information can help investigators identify patients with
specific pharmacogenetic profiles, and may reduce the
size and cost of phase III clinical trials needed to estab-
lish drug efficacy.

Future challenges
Early studies of pharmacogenetics were mostly
monogenic candidate-gene association studies. These
studies were often hypothesis driven, based on identi-
fying phenotypic variability and correlating with
genetic polymorphism. Although this approach has
been extremely useful in advancing our knowledge in
pharmacogenetics, monogenic association study has
some limitations: (i) it is difficult to ascertain if the
positive association observed could be due to the
linkage with untyped functional variant allele or to
intra-gene interaction; (ii) it is not often possible to
evaluate each SNP directly because of cost con-
straints and incomplete knowledge of the polymor-
phisms; and (iii) drug disposition and drug response
are usually determined by the interaction of multiple
genes and pathways.

As there is approximately one SNP in every 1000–
3000 base pairs throughout the human genome [131],
it is possible that up to hundreds of different variable
loci are present within a candidate gene. However,

SNPs or alleles physically close together on the same
chromosome are rarely separated by recombination,
and hence they tend to occur more frequently together
rather than by chance. This association between neigh-
bouring SNPs or alleles is known as linkage equilib-
rium and it enables the selection of marker SNPs,
known as haplotype tagging SNPs, to capture the
genetic diversity across a region or haplotypes block,
thus reducing the number of SNPs needed to represent
all the common polymorphisms in a candidate gene to
an average of five to seven SNPs. Recently, Sai et al.
reported that the haplotype structure of UGT1A1 in
Japanese patients may be adequately represented by
limited numbers of marker alleles, which illustrates
the economy of this approach. There is emerging evi-
dence that polymorphisms in OATP1B1 and ABCC2
may also affect the disposition of SN-38 [132, 133].
Haplotype association studies would allow the evalua-
tion of the large set of candidate genes, for example,
between UGT1A1 and various transporters in associa-
tion studies. There is an ongoing global effort by the
International HapMap Project to establish the haplo-
type structures of four different population groups.
Once the population haplotype structure is available,
empirical genome-wide screen can be performed to
identify candidate genes with appropriate haplotype
tagging SNPs. Expression microarrays and proteomic
studies provide alternative strategies to identify candi-
date genes that will complement current haplotype–
phenotype approaches.

Conclusions
Pharmacogenetic studies have provided strong evi-
dence for the genetic basis of drug response and tolera-
bility. The translation of pharmacogenetic research into
clinical practice is time consuming, labour intensive
and expensive. When possible, pharmacogenetic testing
should be incorporated in early phase clinical trials.
The biological functions of causal variants should be
evaluated and the association validated across different
population groups. All of these require a collaborative
effort involving multiple disciplines and between aca-
demic centres with complementary areas of expertise.
The Pharmacogenetics Research Network (PGRN),
which comprises 12 institutes across the USA, is an
example of one such collaboration (http://www.
pharmgkb.org/). Although the extensive use of pretreat-
ment pharmacogenetic testing is still limited, the
prospects of using pharmacogenetic testings to tailor
individual  therapy  regimens  in  the  future  are
promising.

http://www
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